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Osseodensification enables bone 
healing chambers with improved 
low‑density bone site primary 
stability: an in vivo study
Rafael Coutinho Mello‑Machado1,2,11, Suelen Cristina Sartoretto3,4,5,11, 
Jose Mauro Granjeiro5,6, José de Albuquerque Calasans‑Maia7, 
Marcelo Jose Pinheiro Guedes de Uzeda3,5, Carlos Fernando de Almeida Barros Mourão5, 
Bruna Ghiraldini8, Fabio Jose Barbosa Bezerra9, Plinio Mendes Senna10 & 
Mônica Diuana Calasans‑Maia5*

Primary implant stability is a prerequisite for successful implant osseointegration. The 
osseodensification technique (OD) is a non‑subtractive drilling technique that preserves the bone 
tissue, increases osteotomy wall density, and improves the primary stability. This study aimed to 
investigate the hypothesis that OD, through a wider osteotomy, produces healing chambers (HCs) at 
the implant‑bone interface without impacting low‑density bone primary stability. Twenty implants 
(3.5 × 10 mm) with a nanohydroxyapatite (nHA) surface were inserted in the ilium of ten sheep. 
Implant beds were prepared as follows: (i) 2.7‑mm‑wide using subtractive conventional drilling (SCD) 
technique (n = 10); (ii) 3.8‑mm‑wide using an OD bur system (n = 10). The sheep were randomized to 
two groups, with samples collected at either 14‑(n = 5) or 28‑days (n = 5) post‑surgery and processed 
for histological and histomorphometric evaluation of bone‑implant contact (BIC) and bone area 
fraction occupancy (BAFO). No significant group differences were found with respect to final insertion 
torque and implant stability quotient (p > 0.050). BIC values were higher for SCD after 14 and 28 days 
(p < 0.050); however, BAFO values were similar (p > 0.050). It was possible to conclude that the OD 
technique allowed a wider implant bed preparation without prejudice on primary stability and bone 
remodeling.

Dental implants failure may be caused by local (low-density bone, compromised bone volume, and immediate 
implant placement) and systemic factors (systemic diseases, titanium allergy and tobacco use)1–3. Remodeling 
at the bone-implant interface requires the mechanical engagement of the dental implant with bone at the point 
of insertion, clinically defined as primary  stability4. Several factors may influence this primary stability such as 
material biocompatibility, bone type and volume at the host site, loading conditions, surface technology (micro-
nano topography and chemical composition), macrogeometry (implant body and thread design), and surgical 
preparation of the implant  site5.

The use of biomimetic surfaces was observed in the early 1990s, particularly with hydroxyapatite (HA) 
 coatings6, to improve the osteoconductive property of titanium for enhanced connection with the bone  tissue7,8. 
However, a systematic review of clinical trials found similar long-term survival between HA-coated and uncoated 
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titanium  implants9. In fact, the use of plasma- sprayed HA coating may lead to implant failure caused by a rupture 
of the HA-titanium interface, leading to increased bacterial adhesion, and peri-implantitis10.

With the development of nanotechnology, biomimetic surfaces have migrated to the nanometric level. As a 
result, the emergence of nanohydroxyapatite (nHA) coatings allow for the use of HA to induce a chemical bond 
to the bone without the complications associated with plasma-sprayed11. Because bone tissue deposition on the 
surface of implant devices is strongly dependent on cellular interactions with the  surface12,13, the nHA coating 
may accelerate osseointegration because it creates a hydrophilic surface with nanostructures-resembling the 
extracellular matrix of the bone tissue with respect to the size, shape, and crystallinity— which provides more 
substantial anchoring points at the surface for bone  cells14,15.

The osseodensification (OD) concept was introduced to improve the primary stability of implants placed 
in low-density bone  sites16. OD is a non-excavation osteotomy preparation method. In contrast to traditional 
standard drilling, OD compacts and auto-grafts bone in its plastic deformation  phase17. It is a surgical instru-
mentation technique where the bone is compacted into open marrow spaces during drilling, increasing implant 
insertion torque through the preservation and densification of osteotomy site  walls16,18–23. Because more bone 
particles will be present at the bone-implant interface when the implant bed is prepared, the use of OD maintains 
and conserves bone density, creates more bone-implant contact, and accelerates bone healing, consequently, 
enabling faster  osseointegration21,24.

Due to the potential of biomimetic surfaces, creating a space between the implant surface and the bone tissue 
is recommended when drilling the implant bed as it facilitates the deposition of new bone at the  interface25. This 
space, referred to as a healing chamber (HD),is accomplished by using a final drill with a diameter larger than the 
implant’s core diameter, but smaller diameter than the implant thread. Consequently, at the same time as the OD 
removes the necrotic bone layer created by the surgical instrumentation, the created space allows coagulum to 
accumulate at the interface, recruiting bone cells for faster bone  formation26,27. However, the creation of an HC 
reduces the bone-to-implant contact (BIC), causing lower primary stability; hence, this procedure is generally 
not recommended for low-density bone.

The present study hypothesizes that the instrumentation when using the OD technique promotes a wider 
implant bed in low-density bone, enabling primary stability for implants with nHA coatings without impaired 
osseointegration. This study reports an in vivo biomechanical, histological, and histomorphometric analysis of 
nHA-coated dental implants.

Results
This study was conducted on the ilium of sheep to evaluate two instrumentation techniques for nano-sized HA 
coatings dental implant installation.

SEM micrographs of the implants surface showed a homogeneous topography of the implant surface at 
50 ×, 1000 ×, 5000 ×, and 15,000 ×, and the energy-dispersive X-ray spectroscopy (EDS) showed the presence 
of calcium (Fig. 1).

In the present research, SCD and OD groups presented final IT values above 60 N-cm. The implant stability 
quotient was above 76, and the median for both groups was 75. (Table 1).

The histological analyses of non-decalcified sections allowed the assessment of the biological response to the 
tested surgical techniques, the area of interest for BAFO and BIC evaluation was determined and drawn, from 
the first thread of the implant to the fourth thread’s beginning (Fig. 2a). Both groups indicated peri-implant 
bone regeneration. After 14 days of surgical procedure, the SCD group presented newly formed bone around the 
implants’ threads demonstrating an evident bone–implant contact (Fig. 2b). The OD group presented a similar 
reaction after 14 days, presenting new bone trabeculae islands surrounded by connective tissue permeating the 
implant surface (Fig. 2d). After 28 days, in both groups, newly formed bone around the implants was clearly 
apparent, and several areas of direct BIC were observed in a time-dependent fashion. The SCD presented exten-
sive remodeling around the implant with a larger area and advanced degree of bone maturity (Fig. 2c), when 
compared to the previous period. The bone remodeling pattern in the OD group also presented more organized 
and compact bone tissue showing larger trabeculae of newly formed bone compared to the first period (Fig. 2e).

A time-dependent increase of BIC and BAFO was observed in SCD (p = 0.002) and OD (p = 0.006) groups 
(Fig. 3); however, no significant between-group differences were identified (p > 0.05). After 14 days of healing, 
BIC values were 66.09% (CI: 49.80– 82.37) and 55.97% (CI: 43.63–68.31) for SCD and OD (Fig. 3a), respectively, 
whereas BAFO yielded 47.96% (CI: 41.29–54.64) and 49.99% (CI: 41.52–58.46) (Fig. 3b). After 28 days of healing, 
BIC values were 82.27% (CI: 78.08–86.47) and 74.30% (CI: 67.99–80.61) for SCD and OD (Fig. 3a), respectively, 
whereas BAFO yielded 65.53% (CI: 57.80–73.27) and 61.76% (CI: 56.24–67.29) (Fig. 3b).

The results of the between-group comparison revealed no statistically significant difference with respect to 
the amount of osteoid, woven bone, and vessels (Fig. 4a,b).

After the Shapiro–Wilk test, the groups were submitted to statistical analysis of One-way ANOVA and Tukey 
post-test (p < 0.05) to evaluate the differences between groups and time points according to the presence of woven 
bone, osteoid and connective tissue percentage. The woven bone increased from 14 to 28 days while the volume 
of connective tissue decreased (p < 0.005). There was no difference between SCD and OD in the osteoid, wave 
bone and connective tissue percentage (p > 0.05).

The neovascularization was evaluated using the scores system from ISO 10993-6/2016: no capillary prolifera-
tion (0); minimal capillary proliferation, focal 1–3 buds (1); groups of 4–7 capillaries with supporting fibroblastic 
structure (2); broad band of capillaries with supporting structures (3); extensive band of capillaries with support-
ing fibroblastic structures (4). The values are presented as median ± confidence interval (n = 5). After Mann–Whit-
ney test, no statistical difference was observed between groups and periods after 14 and 28 days (p > 0.05).
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Figure 1.  Scanning electron microscopy (SEM) micrographs of HAnano. (a) EDS results showing the 
peak of Ca and P; (b) implant geometry at 50 × magnification (scale bar = 2 mm); (c) implant surface at 
1000 × magnification (scale bar = 100 µm); (d) implant surface at 5000 × magnification (scale bar = 20 µm); (e) 
implant surface at 15,000 × magnification (scale bar = 5 µm).

Table 1.  Final insertion torque and implant stability quotient values for both surgical techniques: subtractive 
conventional (SCD) and the osseodensification (OD) drilling groups. *Results represent average of five samples 
calculated for each group for IT and implant stability in minimum, median, and maximum.

Procedure

Insertion torque (N/cm)* Implant stability quotient (ISQ)*

Minimum Median Maximum Minimum Median Maximum

SCD 60 70 80 69 75 76

OD 60 80 80 70 75 76

Figure 2.  Illustration of histomorphometry methodology. (a) the area of interest for BAFO and BIC evaluation 
was determined from the first thread of the implant to the fourth thread’s beginning (dashed rectangle). The red 
line delimitation was used to determine the BIC value, which was later transformed into a percentage. The bone 
area fraction occupancy (BAFO) analysis was calculated after replication the design line of the implant profile 
270 µm away from this profile. (b) SCD group after 14 days; (c) SCD group after 28 days; (d) OD group after 
14 days, and (e) OD group after 28 days. Stain: Toluidine Blue and Acid Fuchsin stained. Scale bar: 100 μm.
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Figure 5 shows the presence of osteoid matrix limited by osteoblasts; the different colors of osteoid matrix 
(light blue) and osteoblast (blue navy) allowed the quantification of osteoid matrix in both groups, which showed 
no differences between the groups.

The histological events at the HC are summarized in Fig. 6. The cascade of cellular events that occur between 
the biological environment and the implant surface initially involves the presence of blood clotting with a thin 
layer of serum protein, which progresses to granulation tissue, followed by immature woven bone. The bone 
formation begins early, during the first week, through the promotion of osteoblast differentiation and the produc-
tion of osteogenic factors, cytokines, and growth factors. The primary bone that includes trabecular of woven 
bone is substituted by parallel-fibered and/or lamellar bone and marrow. Between weeks 1 and 2, the bone tissue 
responsible for primary mechanical stability of the implant, immediately lateral to the implant region, is resorbed, 
and substituted by newly formed bone. After 4 weeks, secondary stability is established with a substantial number 
of osteocytes, as illustrated in Fig. 6.

Discussion
The focus of the current study was to evaluate the primary stability and osseointegration of an nHA coated 
implant inserted using OD with a wider implant bed; the use of SCD was chosen as control. The sheep ilium 
model characterized by low-density bone was selected for its use in this study. The results revealed no between-
group differences with respect to BIC and BAFO values, confirming the null hypothesis of the study.

Figure 3.  (a) The bone-to-implant contact (BIC) and (b) bone area fraction occupancy (BAFO) values of 
implants installed after subtractive conventional drilling (SCD) and osseodensification drilling (OD). * and ** 
indicates significant difference between the evaluation period (p < 0.05). The data are presented as mean and 
confidence interval (CI) at 95% of confidence.

Figure 4.  (a) Woven bone, osteoid and connective tissue percentage in the SCD and OD groups. The values 
are presented as mean ± confidence interval (n = 5). (b) The neovascularization was evaluated using the scores 
system from ISO 10993-6/2016. There was no difference between SCD and OD in the osteoid, wave bone, 
connective tissue percentage, and neovascularization (p > 0.05).
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Whereas bone healing in many animal species is recognized to be faster than in humans, sheep are considered 
to have a bone healing rate similar to  humans30 and have been previously established as useful models for human 
bone turnover and remodeling  activity31. Sheep present advantages, compared with other experimental models, 
for evaluating orthopedic and dental implant systems, such as acceptance by the animal research society and 
easy  management32,33, similarity to humans with respect to body  weight34, composition, metabolism, and bone 
remodeling and regeneration  time32,35. Furthermore they have bones with dimensions suitable for the deployment 
of implant systems and devices of bone fixation that are designed for  humans32, and enable evaluation of up to 
12 implants (in the final size for marketing) per  animal34. Early osseointegration is still considered a challenge in 
areas with the most trabeculated bone (bone type IV). The sheep ilium was used as the animal model because this 
region is considered to be a low-density  bone21,36,37, it had already been used in other histomorphometric studies 

Figure 5.  Representative photomicrographs of wound healing to different surgical drill techniques. The dashed 
area is the magnification of the square, which allows the visualization of the vessels (yellow arrow), woven bone 
(red asterisk), osteoblasts paving (red arrow) and below, the osteoid matrix (black asterisk). SCD (a, b) and OD 
(c, d) 14 and 28 days after implantation, respectively. The area corresponds to the third most coronal thread. 
Stain: Toluidine Blue and Acid Fuchsin. Magnification: 20 × and 40 × ; Scale bar: 100 µm and 50 µm.

Figure 6.  Graphical representation of timeline of osseointegration of dental implants concerning cellular events 
from day 1 to 28 after implantation. It is possible to see the presence of a well-defined bone-implant interface 
after 28 days of implantation. The cellular information of days  128 and  729 was based on previous studies. The 
authors acknowledge Dr. Helder Valiense for the help in making the schematic figure.
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involving dental implants, an absence of postoperative  morbidity36 and no need to euthanize the  animals38. Once 
the bone quality was characterized (type IV), the anatomical region in the jaws was not considered because the 
presence of low-quality bone may be related to the individual physiology of each patient and not to the anatomi-
cal position in the jaws.

All previous animal studies aimed to investigate the bone–implant contact and bone area fraction occupancy 
at different time points and macro/micro geometries. Furthermore, two clinical  trials4,39 aimed to compare 
the insertion torque and implant stability of implants placed via OD and SCD. The present study evaluated for 
the first-time histological events around nanohydroxyapatite dental implant coating using different drilling 
techniques.

The clinical approach for the installation of dental implants in low-density bone, such as the posterior region 
of the maxilla, typically consists of an underprepared implantation site to improve the implant’s primary stability 
so that osseointegration can proceed. On the other hand, implants presenting biomimetic surfaces, which can 
enhance the bone healing process, may benefited when HCs are present at the  surface40. Furthermore, when 
the osteotomy is performed to allow the presence of the HCs at the bone–implant interface, it reduces the BIC. 
However, there is a gap of evidence concerning the ability of the biomimetic surfaces to overcome the inadequate 
primary stability induced by the production of the HCs. Hence, it is worth exploring whether a hydrophilic sur-
face with nanostructures and associated with a wider osteotomy technique, producing HCs at the implant–bone 
interface, would produce sufficient bone to provide satisfactory initial implant stability.

Therefore, the present study was designed to verify whether the OD technique could be a viable approach 
for standardization of the HC in low-density bone when using dental implants with a biomimetic surface. The 
implants used in this study have a bioactive surface with nanostructured hydroxyapatite and the same macro-
geometry, diameter, and length; therefore, the only difference between the groups was the instrumentation 
technique. In the OD group, the final implant bed was 3.3 mm, whereas in the SCD group, it was 2.7 mm. The 
wider implant bed in the OD group allowed for the creation of an HC.

The first prerequisite for osseointegration is adequate final insertion torque and the implant’s primary 
 stability13,41. Both surgical techniques in the present study demonstrated adequate primary stability in the low-
density bone, reflecting the special design of the implant to boost the primary  stability42. Comparing the surgical 
techniques, similar IT and ISQ were identified for both groups, demonstrating that the densification of the inter-
face promoted by OD compensates the use of an implant–implant bed discrepancy of 0.6 mm. The improvement 
of primary stability when using OD was also observed in previous  studies16,21,26,37,43–46, regardless of the implant’s 
design or the implant  surface20,22,47. Nevertheless, previous studies demonstrated that the densification of the 
bone interface does not guarantee adequate primary stability ex-vivo18 and in vivo48 because of high interfacial 
stresses that caused fractures and triggered a prolonged period of bone resorption. However, it was the first 
time that such a small implant–implant bed difference had been evaluated, and no fibrous tissue formation was 
identified at the bone–implant interface.

As expected for a wider implantation bed, BIC results at 14 days indicated no statistical differences. In con-
trast, Pantani et al. demonstrated in vivo study in dogs that milling with a final diameter 0.2 mm narrower than 
the implant produces a bone–implant contact similar to subtractive conventional osteotomy, with a final diameter 
0.8 mm smaller than the  implant40. When SCD is compared to OD at same final diameter, previous studies, using 
the same animal model, have shown that this technique improved the bone volume around dental  implants19,49,50. 
In contrast, other studies did not find any healing impairment related to the  instrumentation47. Unfortunately, in 
the current study design, the BIC was not assessed at the time of implant insertion, which would have allowed 
for assessment of the histological variation in 0 to 14 days of healing.

Following histomorphometric analysis of BAFO, the implant–profile design was then duplicated and aligned 
at 270 µm in the long axis of implant, thus completing the total area of interest. This methodology was based on a 
previous study that used 200 µm; in our study, 270 µm was used to enlarge the area of  interest51,52. When BAFO 
is observed, it is possible to note that a faster bone healing in the OD group again compensates for the larger 
osteotomy. The bone interface was furthest from the implant surface in the OD group at the moment of implant 
insertion, and after 14 days of bone healing, BAFO values were similar to the SCD group. In contrast, previous 
data reported similar bone healing when using OD drills in subtractive (clockwise rotation) and densification 
(counterclockwise rotation)  modes47,49. Because a 3.8 mm-wide implantation bed without OD group was not 
evaluated, it was not possible to conclude whether the faster healing would be a consequence of the HCs at the 
interface, as proposed by other  authors24,49, or because there was a denser bone–implant interface.

After 28 days of healing, BIC and BAFO values were similar in both SCD and OD groups. After the same 
period, a higher between-groups difference was reported in a previous study using a pig model, in which BIC 
results were obtained for implants inserted in beds prepared with OD (62.5%) and compared to implants inserted 
in beds prepared by the osteotome technique (31.4%) in the mandibular  crest45. However, the initial interlocking 
due to the implant geometry was higher in the present study, which can overlap the benefit of OD in improving 
bone density at the interface. After 28 days, it was possible to observe the secondary bone and connective tissue 
around the implants; hence, the longest experimental period in this study was 28 days.

According to Trisi et al.53, immediate implant loading can be recommended when IT is at least 45 N-cm, 
and ISQ is at least  6853,54. Here the median for IT was higher than 70 N-cm and the ISQ was 75 for both groups, 
allowing for both instrumentation techniques for the immediate implant loading.

The OD concept can be applied in clinical practice in situations such as promoting bone ridge expansion with 
enhanced primary stability and higher insertion torque values, minimizing implant dehiscence, fenestrations, and 
can be used for crestal sinus lift in a simple, safe, and predictable way with reduced  morbidity55. Previous clinical 
studies have demonstrated improved of  osseointegration56 and higher IT and  RFA17,55,56. The present pre-clinical 
study adds new evidence through a histomorphometric analysis of the bone-implant interface occurring after 
14 and 28 days of healing, quantifying the osteoid, woven bone, connective tissue, and vascular neoformation. 
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Altogether, the results improve understanding of the osseointegration process through two different instrumenta-
tion techniques on a bioactive nano-hydroxyapatite surface.

Despite this study finding that a wider implant bed using OD is a viable approach in low-density bone, it is 
important to highlight that only one implant geometry was used. Therefore, the extrapolation of the results of 
the present study to other implant systems should be done with care. Although the ability of the biomimetic 
nHA implant surface together with the HC allows for adequate primary stability, extrapolation of the current 
results to other implant surfaces should be done with caution and long-term analyses are required to better 
understand the effect of OD with another implant surface on implant survival. Long-term analyses for assessing 
bone saucerization as a function of the osteotomy technique are strongly recommended. Within the limitations 
of this study, it can be concluded that OD technique performed with a wider surgical bed provided comparable 
levels of initial implant stability, BIC, and BAFO to the conventional subtractive under-drilling procedure without 
impairing the osseointegration.

Methods
Dental implants and scanning electron microscopy. This study used 20 titanium dental implants 
(3.5  mm in diameter and 10  mm in length) with a nano-sized crystalline nHA coating (Epikut Plus, S.I.N. 
Implant System, Sao Paulo, SP, Brazil). High-resolution scanning electron microscopy (SEM) images obtained 
with an FEI-Quanta 450 (Thermo Fisher Scientific, Waltham, MA, USA) revealed the surface topography of the 
implants, at an accelerating voltage of 10 kV; focal width of 3.0; and magnifications of 50 ×, 1000 ×, 5000 ×, and 
15,000 ×. Energy-dispersive X-ray spectroscopy analysis determined each surface’s chemical composition at an 
acceleration voltage of 20 kV and focal width of 40 using an EDAX detector equipped with a dual-beam elec-
tron microscope (AMETEK Materials Analysis Division, Mahwah, NJ, USA) and the Genesis software program 
(EDAX, LLC, Mahwah, NJ, USA).

Animal model. This in vivo study was approved by the Institutional Animal Care and Use Committee from 
Federal Fluminense University (protocol # 9531061119) following the Animal Research: Reporting of In Vivo 
Experiments (ARRIVE) and Planning Research and Experimental Procedures on Animals: Recommendations 
for Excellence (PREPARE)  guidelines57,58. The animals were kept and operated at the Federal Fluminense Uni-
versity Farm School and were accompanied by a veterinarian with more than 20 years of experience. All experi-
ments were performed between March and July of 2020.

The sample size was calculated using a priori power analysis based on the results from a previous study, which 
evaluated BIC in the same experimental animal model, to estimate the effect  size36. Considering a type 1 error 
of 0.05 and power of 0.95, the two-tailed t-test determined a sample size of 5 implants per group/time point. In 
compliance with the reduction, refinement and replacement  program59, the animals were also used for another 
 study36. None of the animals were euthanized after the end of the present study.

Ten adult female Santa Ines sheep aged 2–4 years, with an average body weight of 37.05 kg (range 31–42 kg), 
were randomly allocated using the coin-toss method into two experimental periods (14 or 28 days of healing).

Each animal received two implants (one for each group) in the ilium, a low-density bone, with a wide bone 
area that simultaneously allowed the installation of multiple implants. The bone blocks can be collected without 
any morbidity for the animals in terms of locomotion and health. The implant position was randomly defined 
using the sealed envelope method, a surgical map of implant positioning inserted in the selected animal, ensuring 
a similar distribution into bone tissue for both groups. The inter-implant distance was at least 5 mm.

Before beginning the study, all animals presented good general health and physical condition after clinical 
examination by an experienced veterinarian. In the preoperative period, the animals received food composed of 
the pastures and, during the postoperative period, in addition to the aforementioned pastures, nutritional sup-
plementation appropriate for sheep. Salt mineral water ad libitum was available during the entire experimental 
period. The animals were transferred from the field to the research center two weeks before the surgeries to avoid 
stress. The animals fasted for eight hours before the surgery.

Surgical procedure and implants installation. The animals were given 0.05  mg/kg of aceproma-
zine intravenously (Acepran; Vetnil, Louveira, Sao Paulo, SP, Brazil) and 0.2 mg/kg of diazepam intravenously 
(Diazepan; Teuto, Anapolis, GO, Brazil), as well as 0.4 mg/kg of morphine intramuscularly (Dimorf; Cristalia, 
Itapira, Sao Paulo, SP, Brazil) for premedication. After orotracheal intubation and ventilation, 4 mg/kg of propo-
fol intravenously (Propofol Baxter; Baxter Hospitalar LTDA; São Paulo, SP, Brazil) was provided and sustained 
using 1% isoflurane (Cristalia, Itapira, SP, Brazil). Meanwhile, 4 mg/kg of lidocaine (Xylestesin; Cristalia, Itapira, 
SP, Brazil) and 0.1 mg/kg of morphine (Dimorf; Cristalia, Itapira, SP, Brazil) were used for epidural. block. The 
edges of the iliac crests were exposed through a horizontal skin incision of 5 cm in length. The skin and fascial 
layers were opened separately using a scalpel handle no. 3 (Bard Parker; Aspen Surgical, Caledonia, MI, USA) 
and blade no. 15 (Solidor; Lamedid, Osasco, Sao Paulo, SP, Brazil).

Two different instrumentation techniques for the preparation of the implantation bed were used: control 
group, subtractive conventional drilling (SCD) according to the implant manufacturer instructions for low-
density bone (lance bur, 2.0 and 2.7 mm diameter tapered burs); and experimental group, OD drilling using 
multi-fluted tapered burs (2.0 mm pilot, 2.5, 3.0, and 3.3 conical burs) (Densah Bur; Versah, Jackson, MI, USA), 
with a final diameter larger than the implant core diameter. Drilling was performed with clockwise rotation for 
SCD and counterclockwise rotation for OD group at 1200 rpm under saline irrigation for both groups. Drilling 
for both groups was performed by the same operator (M.D.C-M.).

All implants were installed with the aid of a handpiece coupled to a drilling unit (BLM 600 plus; K Driller, 
Sao Paulo, SP, Brazil) under a profuse 0.9% sodium chloride solution (Sterile Saline Solution; Eurofarma, Rio de 
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Janeiro, RJ, Brazil) and in low rotation (24 rpm) to avoid tissue necrosis due to overheating. The final insertion 
torque (IT) was recorded for each implant by the drilling unit. When the IT value was higher than 50 N-cm, 
an analogic wrench was used (S.I.N. Implant System, Sao Paulo, Brazil). The minimum, median, and maxi-
mum values for IT of the five samples were calculated for each group. The implant stability quotient (ISQ) was 
determined with an Osstell IDx device (Ostell/Integration Diagnostics; Gothenburg, Västra Götaland, Sweden), 
simulating mesiodistal and buccolingual measurements, and the average was  recorded60. The minimum, median, 
and maximum values for ISQ of the five samples were calculated for each group.

After surgical procedures, all animals received 4 mg/kg of the analgesic Tramal (Tramadol; Pfizer, New York, 
NY, USA) and 0.5 mg/kg of the anti-inflammatory meloxicam (Meloxivet; Duprat, Rio de Janeiro, RJ, Brazil) 
over five days. Antibiotic therapy by intramuscular injection of 0.1 mL/kg of oxytetracycline (Terramicina; Pfizer, 
New York, NY, USA) was also used every 24 h for three days, including the day of the surgery. Oxytetracycline 
spray with hydrocortisone (Terra-Cortril Spray; Zoetis, Sao Paulo, SP, Brazil), and zinc oxide ointment with 
cresylic acid (Unguento Chemitec; Chemitec, Sao Paulo, SP, Brazil) together with silver spray (Aerocid Total; 
Agener União, Araçoiaba da Serra, SP, Brazil) was applied daily at the wound site to support healing and prevent 
local infection.

Histological procedures. The sheep were submitted to the same anesthetic procedures following 14 and 
28 days of healing. The bone blocks were collected with a 5-mm internal diameter trephine drill (S.I.N. Implant 
System, São Paulo, SP, Brazil). Anesthetic and surgical procedures were followed according to the protocol 
reported above, and all sheep were subsequently returned to the farm, where they completely recovered after 
the biopsies.

Immediately after the collection, the samples containing bone and implants were fixed in 4% neutral-buffered 
formalin solution for 48 h. The dehydration of samples in ascending alcohol solutions of 60%, 70%, 90%, and 
100% was performed under agitation and was subsequently infiltrated through daily changes of ascending grades 
of alcohol/resin (Technovit 7200 VLC; Kultzer, Wehrheim, Hesse, Germany): 70/30, 50/50, 30/70, and 100% 
resin. Thereafter, embedding of specimens into resin (Technovit 7200; Kulzer, Wehrheim, Hesse, Germany) was 
performed using a light polymerization unit (EXAKT 520; Exakt System, Norderstedt, Hamburg, Germany) in 2 
steps by different wavelengths (white/blue light) 8 h for each light. The bone blocks were cut in the mid-axial and 
apical-coronal planes using a macro-scale cutting and grinding technique (Exakt 310 CP series; Exakt System, 
Norderstedt, Hamburg, Germany). The obtained slices were ground and polished to a final thickness of 30 to 40 
µm38. Finally, the slices were stained with toluidine blue to differentiate newly formed bone, and acid fuchsin was 
used to contrast the background. Light microscopy at 10 × and 20 × magnifications (Olympus BX43; Olympus 
Corporation, Tokyo, Japan) supported the analysis of the slices, with images acquired using Olympus Cellsens 
(cellSens software; Olympus Corporation, Tokyo, Japan).

The histomorphometric analysis was conducted from reconstructions of the implant and adjacent bone. These 
images were obtained from captured photomicrographs with 10 × magnification in sequenced fields to scan and 
reconstruct. After the reconstruction of all images, the area of interest for BAFO evaluation was determined and 
drawn, from the first thread of the implant to the fourth thread’s beginning. This line delimitation was used to 
determine the BIC value, which was later transformed into a percentage. The implant-profile design was then 
duplicated and aligned at 270 µm in the long axis of the implant, thus completing the total area of interest. Image 
J software (National Institutes of Health, Bethesda, MD, USA) manually determined the bone area fraction occu-
pancy (BAFO), which was later transformed into a  percentage36. Using the reconstructed images, the presence 
of osteoid, woven bone, connective tissue, and vessels around the implants was also quantified. For this analysis, 
toluidine blue staining was used, as it allows for the color identification of osteoid and mineralized bone. The area 
of interest was drawn with a 200 µm box around the implant. For vessel quantification, scores from 0 to 4 from 
ISO 10993-6/2016 were used, where 0: no neovascularization; 1: minimal capillary proliferation focal 1–3 buds; 
2: groups of 4–7 capillaries with supporting fibroblastic structures; 3: broad band of capillaries with supporting 
structures; and 4: extensive band of capillaries with supporting fibroblastic structures.

One single and experienced observer conducted the histologic and histomorphometric evaluations. All 
samples were coded, and the examiner evaluated the slides blindly with respect to the experimental group and 
endpoints.

Statistical analysis. A Shapiro–Wilk test was used to check data distribution. The log transformation of 
ISQ was used to conform to normality. Fitting a normal distribution, the groups and the healing time points 
were compared using a t-test considering a significance level of 0.05. All analyses were accomplished using Prism 
Graph Pad 8.3 software (GraphPad Software, San Diego, CA, USA). The values for IT are presented in minimum, 
median, and maximum, and the data for BIC and BAFO are presented in mean plus confidence interval at 95% 
of significance.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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